

Isostatic gravity disturbances in the definition of the Vening-Meinesz Moritz inverse problem of isostasy

Robert Tenzer (1), Mohammad Bargherbandi (2,3), Lars E. Sjoeberg (2), and Pavel Novák (4)

(1) School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan, China (rtenzer@sgg.whu.edu.cn), (2) Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden (mohbag@kth.se), (3) Department of Industrial Development, IT and Land Management, University of Gävle, SE-80176 Gävle, Sweden (lars.sjoeberg@abe.kth.se), (4) New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, Plzen, Czech Republic (panovak@kma.zcu.cz)

The isostatic gravity anomalies have been traditionally used to solve the inverse problems of isostasy. Since gravity measurements are nowadays carried out together with GPS positioning, the utilization of gravity disturbances in various regional gravimetric applications becomes possible. In global studies, the gravity disturbances can be computed using global geopotential models which are currently available to a very high accuracy and resolution. In this study we facilitate the definition of the isostatic gravity disturbances in the Vening-Meinesz Moritz inverse problem of isostasy for finding the Moho depths. We further utilize uniform mathematical formalism in the gravimetric forward modelling based on methods for a spherical harmonic analysis and synthesis of gravity field. We then apply both mathematical procedures to determine globally the Moho depths using the isostatic gravity disturbances. The results of gravimetric inversion are finally compared with the global crustal seismic model CRUST2.0; the RMS fit of the gravimetric Moho model with CRUST2.0 is 5.3 km. This is considerably better than the RMS fit of 7.0 km obtained after using the isostatic gravity anomalies.