



## Improving modelled impacts on the flowering of temperate fruit trees in the Iberian Peninsula of climate change projections for 21st century

Margarita Ruiz-Ramos (1), David Pérez-López (1), Enrique Sánchez-Sánchez (2), Ana Centeno (1), Alessandro Dosio (3), and Noelia Lopez-de-la-Franca (2)

(1) AgSystems-CEIGRAM, Technical University of Madrid, Spain (margarita.ruiz.ramos@upm.es), (2) Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain, (3) European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy.

Flowering of temperate trees needs winter chilling, being the specific requirements dependent on the variety. This work studied the trend and changes of values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. According to our previous results (Pérez-López et al., 2012), areas traditionally producing fruit as the Ebro (NE of Spain) or Guadalquivir (SO) valleys, Murcia (SE) and Extremadura (SO) could have a major cold reduction of chill-hours. This would drive a change of varieties or species and may enhance the use of chemicals to complete the needs of chill hours for flowering. However, these results showed high uncertainty, partly due to the bias of the climate data used, generated by Regional Climate Models.

The chilling hours were calculated with different methods according to the species considered: North Carolina method (Shaltout and Unrath, 1983) was used for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The climate data used as inputs were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (<http://www.ensembles-eu.org/>) first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012).

This work aims to improve the impact projections obtained in Pérez-López et al. (2012). For this purpose, variation of chill-hours between 2nd half of 20th century and 1st half of 21st century at the study locations were recalculated considering 1) a feedback in the dates in which the chilling hours are calculated, to take into account the shift of phenological dates, and 2) substituting the original ENSEMBLES data set of climate used in Pérez-López et al. (2012) by the bias corrected data set. Calculations for the 2nd half of 20th century will be used to evaluate the quality of the new data set of projections.

### Acknowledgements

This research has been funded by project PEII10-0248-5680 from Junta de Comunidades de Castilla-La Mancha, Spain.

### References

De Melo-Abreu, J. P. Barranco D. Cordeiro, A. M. Tous, J. Rogado, B. M. Villalobos, F. J. 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. *Agricultural and Forest Meteorology*, 125: 117-127.

Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate . *Journal of Geophysical Research*, VOL. 116, D16106, doi:10.1029/2011JD015934

Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. *Journal of Geophysical Research*, Volume 117, D17, doi: 10.1029/2012JD017968

Herrera et. al. (2012) Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). *International Journal of Climatology* 32:74-85 DOI: 10.1002/joc.2256.

Pérez-López; D., Ruiz-Ramos, M., Sánchez-Sánchez. E., Centeno A., Prieto-Egido, I., and López-de-la-Franca, N., 2012. Influence of climate change on the flowering of temperate fruit trees. *Geophysical Research Abstracts* Vol. 14, EGU2012-5774, EGU General Assembly 2012.

Richardson, E.A. Seeley, S.D. Walker, D.R. 1974. A model for estimating the completion of rest for 'Redhaven'

and 'Elberta' peach trees. *HortScience*, 9: 331-332.

Shaltout, A.D. Unrath, C. r. 1983. Rest completion prediction model for 'Starkrimson Delicious' apples. *J. Amer. Soc. Hort. Sci.*, 108: 957-961.