

Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century

Clara Gabaldón (1), Ignacio J. Lorite (1), M. Inés Mínguez (2), Alessandro Dosio (3), Enrique Sánchez-Sánchez (4), and Margarita Ruiz-Ramos (2)

(1) IFAPA - Centro Alameda del Obispo. Junta de Andalucía, Córdoba, Spain, (2) AgSystems-CEIGRAM, Technical University of Madrid, Spain, (3) European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy, (4) Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain

The objective of this work is to generate and analyse adaptation strategies to cope with impacts of climate change on cereal cropping systems in Andalusia (Southern Spain) in a semi-arid environment, with focus on extreme events.

In Andalusia, located in the South of the Iberian Peninsula, cereals crops may be affected by the increase in average temperatures, the precipitation variability and the possible extreme events. Those impacts may cause a decrease in both water availability and the pollination rate resulting on a decrease in yield and the farmer's profitability. Designing local and regional adaptation strategies to reduce these negative impacts is necessary.

This study is focused on irrigated maize on five Andalusia locations. The Andalusia Network of Agricultural Trials (RAEA in Spanish) provided the experimental crop and soil data, and the observed climate data were obtained from the Agroclimatic Information Network of Andalusia and the Spanish National Meteorological Agency (AEMET in Spanish). The data for future climate scenarios (2013-2050) were generated by Dosio and Paruolo (2011) and Dosio et al. (2012), who corrected the bias of ENSEMBLES data for maximum and minimum temperatures and precipitation. ENSEMBLES data were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (<http://www.ensembles-eu.org/>).

Crop models considered were CERES-maize (Jones and Kiniry, 1986) under DSSAT platform, and CropSyst (Stockle et al., 2003). Those crop models were applied only on locations where calibration and validation were done.

The effects of the adaptations strategies, such as changes in sowing dates or choice of cultivar, were evaluated regarding water consumption; changes in phenological dates were also analysed to compare with occurrence of extreme events of maximum temperature. These events represent a threat on summer crops due to the reduction on the duration of grain filling period with the consequent reduction in yield (Ruiz-Ramos et al., 2011) and with the supraoptimal temperatures in pollination.

Finally, results of simulated impacts and adaptations were compared to previous studies done without bias correction of climatic projections, at low resolution and with previous versions of crop models (Mínguez et al., 2007).

This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain.

References

Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. *Journal of Geophysical Research*, VOL. 116, D16106, doi:10.1029/2011JD015934

Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. *Journal of Geophysical Research*, Volume 117, D17, doi: 0.1029/2012JD017968

Jones, C.A., and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station.

Mínguez, M.I., M. Ruiz-ramos, C.H. Díaz-Ambrona, and M. Quemada. 2007. First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. *Climatic Change* 81: 343–355.

Ruiz-Ramos, M., E. Sanchez, C. Gallardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. *Natural Hazards and Earth System Science* 11: 3275–3291.

Stockle, C.O., M. Donatelli, and R. Nelson. 2003. CropSyst , a cropping systems simulation model. *European Journal of Agronomy*18: 289–307.