

The impact of global land-cover change on the terrestrial water cycle

Shannon M. Sterling (1,2), Agnès Ducharne (2), and Jan Polcher (3)

(1) Departments of Earth Sciences and Environmental Science, Dalhousie University, Halifax, B3H 4R2, Canada, (2) UMR Sisyphe 7619, Université Pierre-et-Marie Curie Paris IV, Tour 56-55, Case 105, 4 place Jussieu, 75252 Paris Cedex 05, France, (3) Laboratoire de Météorologie Dynamique, Université Pierre-et-Marie Curie Paris IV, Case Postale 99, 4 place Jussieu, 75252 Paris Cedex 05, France

Floods and droughts cause perhaps the most human suffering of all climate-related events; a major goal is to understand of how humans alter the incidence and severity of these events by changing the terrestrial water cycle. Here we use over 1,500 estimates of annual evapotranspiration (ET) and a database of global land-cover change¹ to project alterations of global scale terrestrial ET (TET) from current anthropogenic land-cover change. Geographic modelling reveals that land-cover change reduces annual TET by approximately 3,500 km³ yr⁻¹ (5%) and that the largest changes in ET are associated with wetlands and reservoirs. Land surface model simulations support these ET changes, and project increased runoff (7.6%) as a result of land-cover changes. Next we create a synthesis of the major anthropogenic impacts on annual runoff and find that the net result is an increase in annual runoff, although this is uncertain. The results demonstrate that land-cover change alters annual global runoff to a similar or greater extent than other major drivers, affirming the important role of land cover change in the Earth System. Last, we identify which major anthropogenic drivers to runoff change have a mean global change statistic that masks large regional increases and decreases: land-cover change, changes in meteorological forcing, and direct CO₂ effects on plants.