

Mean age of carbon in fine roots from temperate forests and grasslands with different management

Emily Solly (1), Marion Schrumpf (1), Ingo Schöning (1), Steffen Boch (2), and Susan Trumbore (1)

(1) Max Planck Institute for Biogeochemistry, (2) Institute of Plant Sciences and Botanical Garden, University of Bern, Bern, Switzerland

Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocations and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions we measured fine root radiocarbon (^{14}C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. The mean age of C in fine roots in forest environments averaged 11.3 ± 1.8 years (mean \pm SE, $n=27$) and was significantly older and more variable compared to grassland environments (1.7 ± 0.4 years, $n=27$). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated to plant diversity ($r=0.65$) and to the number of perennial species ($r=0.77$). In temperate grasslands the mean age of fine root C is also influenced by the study region mainly due to differences in soil characteristics and climate, with averages of 0.7 ± 0.1 years ($n=9$) on mostly organic sandy soils and of 1.8 ± 0.3 years ($n=9$) and 2.6 ± 0.3 ($n=9$) in more silty and clayey soils respectively. Our results indicate an internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.