DEM simulations of the collapse of submerged granular columns

tao zhao (1), Guy Houlsby (1), and Stefano Utili (2)

(1) Department of Engineering Science, University of Oxford, Oxford, UK, (2) School of Engineering, University of Warwick, Coventry, UK

The collapse of submerged granular columns in plain strain was simulated by 3D Discrete Element Method simulations with periodic boundary in the out-of-plane direction. These analyses are a first step in the attempt to simulate submarine landslides in sandy seabeds in order to investigate the consequent run-out distances. Spherical particles from a realistic particle size distribution of a Leighton buzzard sand and a simple contact model based on linear springs, dashpots and frictional sliders were employed in the presented simulations. A rolling resistance model governed by two micromechanical parameters was added in order to indirectly account for the effect of particle non-sphericity on the angular moment equilibrium of the granular assembly. Calibration of the rolling resistance model leads to predictions of run-out distances in quantitative agreement with the available experimental data.

A comparison between the dry and the submerged cases regarding the observed run-out distances and the time of occurrence of landslide propagation were also drawn up.