

Impacts of Stratospheric Particles Injection on Stratospheric Ozone: Laboratory Studies

Mingjin Tang (1,3), Laylla Rkiouak (1), Steve Fuller (1), Francis Pope (2), Tony Cox (1), Matt Watson (3), and Markus Kalberer (1)

(1) Centre for Atmospheric Sciences, Department of Chemistry, University of Cambridge, UK, (2) School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, (3) School of Earth Sciences, University of Bristol, UK

The stratospheric injection of aerosols is a geoengineering scheme designed to reduce the impacts of climate change. The injected particles scatter solar radiation back to space and hence reduce the radiative forcing of the Earth. The scattering ability of a particle depends on both its size and composition. Particles composed of titania (TiO_2) have recently been highlighted as a possible candidate aerosol because of their impressive light scattering ability by virtue of a high refractive index (Pope et al. 2012).

The impact of particles injection on stratospheric ozone needs to be systematically assessed via laboratory and modelling studies. In this work, the heterogeneous reactions of airborne TiO_2 particles with N_2O_5 and HCl are investigated by using an atmospheric pressure aerosol flow tube. A Chemical Ionization Mass Spectrometer is used to detect trace gases, and a Scanning Mobility Particle Sizer is used to measure aerosol number concentration and size distribution. The kinetics of the uptake of N_2O_5 onto TiO_2 particles and the influence of HCl will be presented, and the result will be compared to the uptake onto natural sulphate stratospheric particles.