

African dust outbreaks over the Mediterranean Basin during 2001-2011: concentrations, phenomenology and trends

Jorge Pey (1,2,3), Xavier Querol (2), Andres Alastuey (2), Francesco Forastiere (1), and Massimo Stafoggia (1)

(1) Department of Epidemiology Lazio Region, via S. Costanza, 53. 00198 Roma, Italy, (2) Institute of Environmental Assessment and Water Research, IDAE-CSIC, C/JordiGirona, 18-26. 08034 Barcelona, Spain, (3) Laboratory of Environmental Chemistry LCE-IRA, Aix Marseille University, 3 Place Victor Hugo, 13001 Marseille, France

Concentrations, phenomenology and trends of African dust outbreaks over the whole Mediterranean Basin were studied on an 11-year period (2001-2011). This work has been performed in the context of the MED-PARTICLES (LIFE programme, EU) project, devoted to quantify short-term health effects of particulate matter over the Mediterranean region by distinguishing different particle sizes, chemical components and sources, with emphasis in the effects of African dust. In order to evaluate conduct this investigation, PM10 data from 19 regional and suburban background sites West to East in the Mediterranean area were compiled. After identifying the daily occurrence of African dust outbreaks, a methodology for estimating natural dust contributions on daily PM10 concentrations was applied.

Our findings point out that African dust outbreaks are sensibly more frequent in southern sites across the Mediterranean, from 30 to 37 % of the annual days, whereas they occur less than 20% of the annual days in northern sites. The central Mediterranean emerges as a transitional area, with slightly higher frequency of dust episodes in its lower extreme when compared to similar latitudinal positions in western and eastern sides of the Basin. A decreasing south to north gradient of African dust contribution to PM10, driven by the latitudinal position of the monitoring sites at least 25°E westwards across the Basin, is patent across the Mediterranean. From 25°E eastwards, higher annual dust contributions are encountered due to the elevated annual occurrence of severe episodes of dust but also because of inputs from Middle Eastern deserts.

Concerning seasonality patterns and intensity characteristics, a clear summer prevalence is observed in the western part, with low occurrence of severe episodes (daily dust averages over 100 $\mu\text{g m}^{-3}$ in PM10); no seasonal trend is detected in the central region, with moderate-intensity episodes; and significantly higher contributions are common in autumn-spring in the eastern side, with occurrence of various severe episodes throughout the year. Overall, African dust emerges as the largest PM10 source in regional background southern sites of the Mediterranean (35-50% of PM10), with seasonal peak contributions to PM10 up to 80% of the total mass in the eastern side.

The multi-year study of African dust episodes and their contributions to PM10 concentrations displays a consistent decreasing trend in the period 2006/2007 to 2011 in 4 of the 17 studied regions, all of them located in the NW of the Mediterranean. Such decrease is almost parallel to that of NAO (North Atlantic Oscillation) index for the summer period, being progressively more negative since 2006. As a consequence, a sharp change in the atmospheric circulation over the last 5 years (a similar negative NAO period occurred in the 1950 decade) have affected the number of African dust episodes and consequently the annual dust inputs to PM10 observed in the NW part of the Mediterranean. By investigating mean temperatures and geopotential height maps at 850hPa it is evident a displacement of warm air masses accomplishing African dust towards the central Mediterranean in the 2007-2008 period, and towards the NW African coast and the Canary Islands in the 2009-2011 period.

Acknowledgements

This study has been founded by the LIFE programme of the European Commission under the Grant Agreement LIFE10 ENV/IT/327. Partial funding was received from the Autonomous Government of Catalonia and the Spanish Ministry of Agriculture, Food and Environment. PM10 data were obtained from EMEP, Airbase and ACTRIS databases. Most of the interpretations were performed thanks to the support of HYSPLIT model, SKIRON, BSC-DREAM and NRL-NAAPS aerosol maps, NCEP/NCAR meteorological database, and image products from MODIS and SeaWiFS NASA satellites.