

Analysis of actinides in an ombrotrophic peat core - evidence of post-depositional migration of fallout radionuclides

Francesca Quinto (1), Erich Hrnecek (1), Michael Krachler (1), William Shotyk (2), Peter Steier (3), and Stephan R. Winkler (3)

(1) European Commission Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, Germany, (2) Department of Renewable Resources, University of Alberta, 839 General Services Building, Edmonton, AB, Canada T6G 2H1, (3) VERA Laboratory, Faculty of Physics, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria

Plutonium (²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu) and uranium (²³⁶U, ²³⁸U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry.

The ²⁴⁰Pu/²³⁹Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average ²⁴⁰Pu/²³⁹Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding ²⁴¹Pu/²³⁹Pu (0.0012 ±0.0005) and ²⁴²Pu/²³⁹Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile.

The maximum of global fallout derived 236 U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236 U bomb peak can be successfully used as an independent chronological marker complementing the 210 Pb dating of peat cores.

The profiles of the global fallout derived 236 U and 239 Pu are compared with those of 137 Cs and 241 Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137 Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241 Am in peat layers preceding the era of atmospheric nuclear tests is observed.