

Study of the height dependence of LS TID amplitudes derived from ionosonde data

Arthur Yakovets, Beibit Zhumabaev, Victor Vodyannikov, Galina Gordienko, and Yuriy Litvinov

Institute of Ionosphere, National Center for Space Research and Technology, Almaty, Kazakhstan (artyak40@mail.ru)

The height dependence of large-scale traveling ionospheric disturbance amplitudes was analyzed on the basis of data of nighttime observations of the ionospheric F layer at the Institute of Ionosphere (Almaty, 76°55 E, 43°15 N). Observations were performed since 2000 till 2007 using a digital ionosonde. Data processing allowed to obtain time variations in the electron density ($N_h(t)$) for fixed altitudes and variations of the F layer peak height (h_mF). The 1166 observation sessions were carried out during the analyzed period, and 581 nights were characterized by wave activity. Nights with the maximum relative amplitude of $N_h(t)$ variations exceeding of 25% were selected for analysis. Large-scale traveling ionospheric disturbances (LS TIDs) with large relative amplitudes were selected in order to provide high accuracy in calculation of absolute amplitude height profiles ($A(h)$) even near the heights of the F layer bottom, which are characterized by small values of the background electron density ($N(h)$). Total number of such nights is 63. All these events were divided on two groups according the maximum magnitude of magnetic disturbances occurred during a period of observations and several hours prior to the beginning of observations. A low and high pass filtering was used to eliminate a high frequency noise and a trend caused by diurnal variation of analyzed parameters.

Regression relationships between h_mF and an altitude h_{Am} corresponding to the maximum absolute amplitude of the wave were derived. The relationships indicated that: a) h_{Am} is always below h_mF , b) a good correlation exists between these parameters, c) the average distance between them varies from ~ 45 km for $h_mF = 280$ km to ~ 80 km for $h_mF = 380$ km under low magnetic activity conditions and from ~ 45 km for $h_mF = 280$ km to ~ 95 km for $h_mF = 450$ km under high magnetic activity conditions, and d) h_{Am} is in the range of 220 – 300 km under the low activity conditions and in the range of 230 – 370 km under the high activity conditions.

Regression relationships between the maximum amplitude of the variations of the electron density at fixed altitudes (δ_{Am}) and amplitude of the $N_h(t)$ variations at the maximum of the F layer (δ_{h_m}) were derived. The relationships indicated that a moderate correlation exists between these parameters. When δ_{Am} changes from 25% to 80% then the average value of δ_{h_m} changes from 5.85% to 15.75% under low magnetic activity conditions, and from 7.7% to 14.3% under high magnetic activity conditions. This indicates that amplitude at the maximum layer is ~ 4 – 5 times less than the maximum amplitude of variations at the fixed height.