

Magnetic mineral distribution in coastal marine sediments collected from off the southwestern Chile.

Noriko Kawamura (1), Naoto Ishikawa (2), and Atsushi Kurasawa (3)

(1) Japan Coast Guard Academy, 5-1 Wakaba-cho Kure Hiroshima 737-8512, Japan (kawamura-noriko@jcg.ac.jp), (2) Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatu-cho Sakyo-ku Kyoto 606-8501, Japan (ishikawa@gaia.h.kyoto-u.ac.jp), (3) Department of Earth Science, Tohoku University, Sendai 980-8578, Japan (akurasawa@jamstec.go.jp)

In order to reveal magnetic mineral distributions in coastal marine sediments taken from off the southwestern Chile, we studied rock magnetic characteristics of surface sediments and performed chemical analysis in bottom water. The samples analyzed were unlithified terrigenous and calcareous sediments recovered by a multiple corer at five stations. Results show that rock magnetic parameters of sediments change with iron and oxygen concentrations in bottom water. Magnetite (Fe_3O_4) and goethite ($\alpha FeOOH$) were common in the samples, whereas (titano)maghemite (rFe_2O_3) and hematite (αFe_2O_3) were recognized at the oxic stations. Results also indicate a general change in mean grain size of magnetic minerals with iron and oxygen concentrations in bottom water. Fine grained magnetic minerals are distributed under anoxic condition. It is suggested that preferential dissolution of magnetic mineral grains occurred.