

Influence of operating parameters on neutralization of alkaline wastewater using CO₂ in a jet loop absorption reactor

Jea Keun Lee and Min Ki Son

Department of Environmental Engineering, Pukyong National University, Busan 608-737, Korea, Republic Of
(leejk@pknu.ac.kr)

The increased focus on global warming has resulted in an increase in studies regarding strategies for the control of CO₂ emissions from combustion processes. In this study, we tested the absorption of CO₂ in combustion gas into an alkaline dyeing wastewater to simultaneously control CO₂ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using CO₂ in a bench-scale semi-batch jet loop absorption reactor (0.1m diameter and 1.0m in height). The operating parameters investigated in the study are gas flow rate of 1.0 - 2.0 L/min and liquid recirculation flow rate of 4 – 32 L/min. We show that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate (QL), reached a minimum value in the range of QL=16L/min and QL=24L/min, and then increased with further increase in QL. The fraction of CO₂ utilization, defined as the ratio of CO₂ used to neutralize the wastewater to CO₂ injected into the reactor, showed a higher value of 0.99 when the wastewater pH was above 9.0. However, the fraction of CO₂ utilization decreased to 0.88 as the wastewater pH lowers to 7.0. Our results suggest that CO₂ in the combustion gas could effectively be used to neutralize alkaline wastewater instead of sulfuric acid, which is a commercially used neutralizing agent in conventional wastewater treatment processes.