

Ion temperature in pre- and post-dipolarization plasma sheets

Daniel Schmid (1), Martin Volwerk (1), Zoltan Vörös (1), Pete Boakes (1), Rumi Nakamura (1), Ming Yu Wu (2), and Steve Milan (3)

(1) Austrian Academy of Sciences, IWF Graz, Graz, Austria (martin.volwerk@oeaw.ac.at), (2) Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei, China, (3) Department of Physics and Astronomy, University of Leicester, Leicester, UK

Using the ECLAT event list of magnetotail dipolarizations, limited to the cases that were presented in Schmid et al. [2011], we study the ion temperature and its anisotropy (i.e. T_{\perp}/T_{\parallel}) in the pre- and post-dipolarization plasma sheets in the Earth's magnetotail. Earlier studies have shown that in the quiescent magnetotail the ion temperature is isotropic, however, during fast flow times there is a strong anisotropy. Lately it has been shown, using THEMIS data, that this anisotropy in the magnetotail is structured in $(T_{\perp}/T_{\parallel}, \beta_{\parallel})$ -space, strongly bound by temperature anisotropy driven instability thresholds (mirror mode, ion cyclotron mode and fire hose instability), and that the ion temperature isotropizes as the flow moves Earthward [Wu et al., 2012, submitted to JGR]. In this study, superposed epoch analysis is performed on the events, where a split-up is made into local time sectors and on pre-dipolarization plasma sheet characteristics.