

Determining the axis orientation of cylindrical magnetic flux rope

Zhaojin Rong (1), Weixing Wan (1), Chao Shen (2), Tielong Zhang (3,4), Anthony Lui (5), Yuming Wang (3), malcolm Dunlop (6), Yongcun Zhang (2), and Qiugang Zong (7)

(1) CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China (rongzhaojin@mail.igcas.ac.cn), (2) State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China, (3) Key Laboratory of Basic Plasma Physics, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China, (4) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, (5) Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA., (6) Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire OX11 0QX, UK, (7) Department of Geophysics, Peking University, Beijing, 100871, China

We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.