

The Force-free Configuration of the Flux Ropes in Geomagnetotail

Yanyan Yang (1,2), Chao Shen (1), Yongcun Zhang (1), Zhaojin Rong (3,4), Xinlin Li (5), Malcolm Dunlop (6), Yonghui Ma (7), Zhenxing Liu (1), and Christopher Carr (8)

(1) State Key Laboratory of Space Weather, National Space Science Center/Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China (yyyang@spaceweather.ac.cn), (2) College of Earth Science, University of Chinese Academy of Sciences, Beijing, China, (3) CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, (4) Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, (5) Laboratory for Atmosphere and Space Physics, University of Colorado, Boulder, USA, (6) Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire, United Kingdom, (7) Space Science Institute, Macau University of Science and Technology, Macao, China, (8) Imperial College of Science, Technology and Medicine, London, United Kingdom

Unambiguous knowledge of the magnetic field structures and electric current distributions are critical for understanding the origin, evolution and the dynamic properties of magnetic flux ropes. In this research, with the multi-point measurements of Cluster and the associated analysis methods, 16 cases of flux ropes in magnetotail are surveyed. It is found that, there is generally a core field in one flux rope; the axis-orientation is mainly within magnetic equatorial plane. Generally, the magnetic field gradient is weak near the axis center where the curvature radius is generally larger. Around the center part of the flux ropes, the current density is approximately field-aligned and about proportional to the strength of core field. The magnetic field strength and current density are becoming strong near the center. Statistically, ~50% of the flux ropes can be approximately described as force free configurations. For one flux rope, the force free structure is mainly concentrated on finite area around the center. The stronger the current density, the more force free the flux ropes are. The force free magnetic structure tends to appear in low beta portion, which is in agreement with the theoretic results. A quasi-force free index is presented to measure the force free nature.