

The Response of the Dayside Equatorial Electrojet to Step-like Changes of IMF B_z

Shinichi Ohtani (1), Teiji Uozumi (2), Hideaki Kawano (2), Akimasa Yoshikawa (2), Hisashi Utada (3), Tsutomu Nagatsuma (4), and Kiyoumi Yumoto (2)

(1) JHU/APL, Space Dept., Laurel, United States (ohtani@jhuapl.edu), (2) International Center for Space Weather Science and Education, Kyushu University, Fukuoka, Japan, (3) Earthquake Research Institute, University of Tokyo, Tokyo, Japan, (4) National Institute of Information and Communications Technology, Tokyo, Japan

The equatorial electrojet (EEJ) is driven by zonal electric fields, which are known to be well correlated with the interplanetary electric field and therefore with the interplanetary magnetic field (IMF) B_z component. In the present study we investigate how the equatorial horizontal (H) magnetic component, and therefore the EEJ, responds to step-like changes of IMF B_z. The reduction of southward IMF B_z (northward turnings) and that of northward IMF B_z (southward turning) are examined separately. The result shows that for the northward turnings, the EEJ immediately starts to weaken with the accuracy of the estimates of the travel times of the IMF changes. The time constant of the response is much longer, and the equatorial H component decreases continuously by 40 nT for 30 min after the northward turnings. In contrast, the response of the EEJ to the southward turnings is far less clear in both magnitude and timing. The difference in the EEJ response to the northward and southward turnings presumably reflects the fact that the magnetosphere-ionosphere system is more sensitive to IMF B_z for southward IMF B_z than for northward IMF B_z. It is suggested that there exists a global current system that connects the auroral electrojets and the EEJ, and the electric field penetrates to the dip equator as the polar cap potential extends to lower latitudes. We also address the effect of night-side substorm activity on the EEJ in the context of IMF B_z changes.