

The penultimate deglaciation and the Last Interglacial as registered in speleothems

Sophie Verheyden (1), Dominique Genty (2), and Karine Wainer (3)

(1) Royal Belgian Institute of Natural Sciences, Geological Survey, Brussels, Belgium

(sophie.verheyden@naturalsciences.be), (2) Laboratoire des Sciences du Climat et de l'Environnement, CEA Saclay, Gif-sur-Yvette, (3) Department of Earth Sciences, University of Oxford, United Kingdom

Speleothems provide paleoenvironmental and paleoclimatic information based on precise chronologies relying on Uranium-series dating combined with high-resolution isotope measurements ($\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ respectively) on the calcite.

In the frame of the Past4Future EU-FP7 project, a review of speleothem records from Europe, Asia and South America, covering the penultimate deglaciation and the Last Interglacial reveal similarities and regional differences in the growth-rate and the calcite $\delta^{18}\text{O}$ signal.

While $\delta^{18}\text{O}$ records show similar changes concentrated around 130 ka (TII) in Europe and in Asia, the growth-rate changes are much more important and more concentrated in a short time-range in European samples than in low latitude ones (Asia, South America). Growth-rate changes in European samples occur between ~ 129.7 ka and ~ 125.8 ka (with uncertainties around 0.2 ka), while they occur between 147.0 ka and 115.0 ka in Asian and South American samples. This suggests important G-IG climate contrasts differences between low and high latitudes.

For European samples, the growth-rate changes are synchronous to the $\delta^{18}\text{O}$ changes at about 130 ka. In the CC5 stalagmite, however, $\delta^{18}\text{O}$ changes synchronized to the marine record showed that the deglaciation could have started at about 141 ka suggesting a transition in different steps. This observation relying on one sample must be confirmed and closer comparison with well-dated speleothems of different latitudes will allow a better insight in transition mechanisms and their causes.