

Uncertainties in sea level reconstructions due to GIA corrections

Svetlana Jevrejeva (1,2), John Moore (2,3,4), Aslak Grinsted (2,5)

(1) NOC, PSMSL, Liverpool, United Kingdom (sveta@noc.ac.uk), (2) College of Global Change and Earth System Science, Beijing Normal University, Beijing, China, (3) Arctic Centre, University of Lapland, Rovaniemi, Finland, (4) Department of Earth Sciences, Uppsala University, Uppsala, Sweden, (5) Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Denmark

We use 1277 tide gauge records since 1807 to compose a global sea level reconstruction and analyse the evolution of sea level trend and acceleration. There is a good agreement between the rate of sea level rise (3.2 mm/yr) calculated from satellite altimetry and the rate of 3.1 mm/yr from tide gauge based reconstruction for the overlapping time period (1993-2009). The new reconstruction suggests a linear trend of 1.9 mm/yr during the 20th century, with only 1.5 mm/yr since 1960. Regional linear trends for 14 ocean basins since 1960 show the fastest sea level rise for the Arctic (3.8 mm/yr), Antarctica (3.5 mm/yr) and North West Pacific region (3.3 mm/yr).

Choice of GIA correction is critical in the trends for the local and regional sea level, introducing up to 6 mm/yr uncertainties for individual tide gauge records, up to 2 mm/yr for regional curves and up to 0.8 mm/yr in global sea level reconstruction.