

Variation of Slope-Area Relationship Caused by a Catastrophic Landslide

Chih-Ming Tseng (1), Ching-Wee Lin (2), Giancarlo Dalla Fontana (3), and Paolo Tarolli (4)

(1) Department of Land Management and Development, Chang Jung Christian University, Kway Jen Dist., Tainan City, Taiwan (cmtseng@mail.cjcu.edu.tw), (2) Department of Earth Sciences, National Cheng Kung University, Tainan City, Taiwan (chingwee@mail.ncku.edu.tw), (3) Department of Land, Environment, Agriculture and Forestry, University of Padova, èAgripolis, viale dell'Università 16, 35020 Legnaro (PD), Italy (giancarlo.dallafontana@unipd.it), (4) Department of Land, Environment, Agriculture and Forestry, University of Padova, èAgripolis, viale dell'Università 16, 35020 Legnaro (PD), Italy (paolo.tarolli@unipd.it)

In August 2009, in Taiwan, Typhoon Morakot with a maximum rainfall of over 2,900 mm, induced over 23,000 landslides in mountainous area throughout southern Taiwan. One large scale deep-seated landslide, the Hsiaolin landslide, with an area of about 250 ha, buried the entire village causing 397 casualties, the disappearance of 53 people, and the destruction of over 100 houses (Lin et al., 2011; Tsou et al., 2011). The LiDAR-derived 2 m resolution DEMs before and after Typhoon Morakot was utilized in this study to perform the relation between slope and contributing area. Montgomery and Foufoula-Georgiou (1993), among other authors (eg. Tarolli and Dalla Fontana, 2009) suggested a partitioning of the landscape into drainage and slope regimes that include hillslopes, unchanneled valleys, debris flow-dominated channels, and alluvial channels. These regimes are based on the different patterns of slope-area relation in a loglog diagram. In the analyzed study area a significantly variation of slope-area diagram after the deep-seated landslide has been observed. Sediment mass produced by deep-seated landslide with approximately 2.7×10^7 m³ (Wu et al., 2011) depleted from hillslope, nearly 90 m deepest failure depth resulted in outward extend of upstream catchment boundary. Huge amount of sediment mass was transported downward also formed significant deposition in debris flow channel and alluvial channel, respectively. These phenomenon also reflects patterns in slope-area diagram. The contributing area related to hillslope-to-valley transition tends to migrate from 20 m² to 50 m², that means hillslope length become longer due to outward development of upstream catchment boundary. The local slope of debris flow channel, and alluvial channel section of the diagram, become gentler due to sediment depositions after the landslide. These high resolution analysis pre and post a major event, represent a strategic tool for a directly quantification of the processes that affected and significantly changed the earth surface.

References

Montgomery, D.R., Foufoula-Georgiou, E., 1993. Channel network source representation using digital elevation models. *Water Resour. Res.* 29, 3925-3934.

Lin, C.W., Chang, W.S., Liu, S.H., Tsai, T.T., Lee, S.P., Tsang, Y.C., Shieh, C.L., Tseng, C.M., 2011. Landslides triggered by the 7 August 2009 Typhoon Morakot in Southern Taiwan. *Engineering Geology* 123, 3–12.

Tarolli, P., Dalla Fontana, G., 2009. Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs. *Geomorphology*, 113, 47-56, doi:10.1016/j.geomorph.2009.02.006.

Tsou, C.-Y., Feng, Z.-Y., Chigira, M., 2011. Catastrophic landslide induced by Typhoon Morakot, ShiaoLin, Taiwan. *Geomorphology* 127, 166-178, doi:10.1016/j.geomorph.2010.12.013.

Tucker, G.E., Bras, R.L., 1998. Hillslope processes, drainage density, and landscape morphology. *Water Resour. Res.* 34, 2751–2764.

Wu, C. H., Chen, S. C., Chou, H. T., (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan, *Engineering Geology* 123(1-2), 13-21, doi: 10.1016/j.enggeo.2011.04.018.