



## Cosmic ray modulation of infra-red radiation in the atmosphere

Karen Aplin (1) and Michael Lockwood (2)

(1) University of Oxford, Physics Department, Oxford, United Kingdom (k.aplin1@physics.ox.ac.uk), (2) Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB (m.lockwood@reading.ac.uk)

Cosmic rays produce small charged clusters, known as molecular cluster ions, as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. Here we describe results from an atmospheric experiment where a thermopile filter radiometer tuned to a  $9.15\mu\text{m}$  absorption band, already associated with infra-red absorption of molecular cluster ions, was used to monitor changes following events identified by a cosmic ray telescope sensitive to high energy ( $>400\text{MeV}$ ) particles, principally muons at the surface. The change in longwave radiation in this absorption band due to molecular cluster ions is  $7\text{ mWm}^{-2}$  for each event recorded by the cosmic ray telescope. The integrated atmospheric energy change for each event is  $1.9\text{ Jm}^{-2}$ , whereas the energy density of a typical air shower (40m radius from a  $10\text{GeV}$  primary) is estimated to be  $10^{-13}\text{ Jm}^{-2}$ , representing a direct amplification factor of  $10^{12}$ . This infra-red absorption from molecular cluster-ions is expected to occur continuously and globally, but calculations suggest that it has only a small effect on climate.