

Decadal changes in O₃, NO₂, and BRO from SCIAMACHY limb soundings and inter-instrumental comparisons

Claus Gebhardt (1), Alexei Rozanov (1), René Hommel (1), Mark Weber (1), John P. Burrows (1), Doug Degenstein (2), Lucien Froidevaux (3), and Anne M. Thompson (4)

(1) Uni Bremen, IUP, Bremen, Germany (gebhardt@iup.physik.uni-bremen.de), (2) University of Saskatchewan, Saskatoon, Canada, (3) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA, (4) Department of Meteorology, Pennsylvania State University, Pennsylvania, USA

The SCIAMACHY/ENVISAT satellite instrument (2002-12) has monitored Earth's atmosphere globally for almost one decade. In its limb viewing geometry, it measured the vertical profiles of the atmospheric limb scatter. O₃, NO₂, and BRO are among the retrieved species. Their vertical profiles are obtained in 1 km altitude steps. Longterm changes as well as periodically varying features are reflected by the resulting time series. The longterm changes are statistically described by trends.

The trend profile of SCIAMACHY limb O₃ extends throughout the stratosphere and is a function of the latitude. There are contrasts and parallels between the tropics and the mid-latitudes. With O₃ being in the focus of interest for several decades now, there is a range of parallel measurements. Thus, the quality of the SCIAMACHY ozone trends is confirmed by inter-instrumental comparisons. There are contemporary satellite instruments as well as different measurement techniques.

In our talk, we further present trend profiles of NO₂ and BRO. Being crosslinked through chemical reactions, their trend profiles are potentially related among each other and to O₃.