Geophysical Research Abstracts Vol. 15, EGU2013-3430, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License.

Towards multiscale simulation of moist global flows with soundproof equations

Wojciech W. Grabowski (1), Marcin J. Kurowski (2), and Piotr K. Smolarkiewicz (3)

(1) NCAR, Boulder, Colorado, USA (grabow@ucar.edu), (2) On leave from Institute of Meteorology and Water Management, Warsaw, Poland (kurowski@ucar.edu), (3) NCAR, Boulder, Colorado, USA (smolar@ucar.edu)

This presentation will discuss incorporation of phase changes of the water substance that accompany moist atmospheric flows into the all-scale atmospheric model based on soundproof equations. Specific issue concerns developing a theoretical basis and practical implementation to include pressure perturbations associated with atmospheric circulations, from small-scale to global, into representations of moist thermodynamics. In small-scale modeling using soundproof equations, pressure perturbations are obtained from the elliptic pressure solver and are typically excluded from the moist thermodynamics. For some small-scale or mesoscale extreme weather events such as a tornado or a hurricane, pressure perturbations are significant and neglecting them in the moist thermodynamics is no longer justifiable. We show through the theoretical analysis that, in larger-scale flows, at least the hydrostatic component of the pressure perturbation needs to be included because pressure variation in synoptic weather systems may affect moist thermodynamics in a way comparable to the temperature variations. As an illustration, we compare numerical solutions to the problem of moist thermal rising in a stratified environment obtained with a fully-compressible acoustic-mode-resolving model and with two versions of the anelastic model, either including or excluding small-scale pressure perturbations in moist thermodynamics. A range of initial temperature perturbations is considered. Model results show that small differences between anelastic and compressible solutions exist only for the largest initial temperature perturbation of $50 \sim K$. This paves the way to include pressure perturbations from the elliptic pressure solver in the larger-scale moist problems that will be considered in the future.