

Remote sensing of reconnection via ARTEMIS dual-spacecraft observations

Stefan Kiehas (1), Vassilis Angelopoulos (2), Andrei Runov (2), and Shan-Shan Li (2)

(1) Austrian Academy of Sciences, Space Research Institute, Graz, Austria (stefan.kiehas@oeaw.ac.at, +43-(0)316-4120690),

(2) Department of Earth and Space Sciences, UCLA, Los Angeles, USA

Each month the two ARTEMIS probes spend about four days in the Earth's magnetotail near lunar orbit. Due to the near-equatorial orbit, the probes spend a considerable time near and inside the plasma sheet. This allows us to investigate large-scale effects of reconnection, such as flux ropes and high-speed flows, utilizing dual-probe observations on a regular basis. On August 31, 2012 around 03:00 UT, the ARTEMIS probes were separated by only 350 km in X_GSW and 0.6 (1) RE in Y_GSW (Z_GSW), where GSW denotes the Geocentric Solar Wind coordinate system, which x-axis is antiparallel to the solar wind flow direction. The two probes observe several TCRs and flux ropes. The inter-spacecraft separation allows us to determine the size of these structures to be not more than 6 RE in z. Counterstreaming beams observed by both probes indicate the simultaneous activity of two X-lines, earthward and tailward of the probes, respectively.