

Crustal flow in western Yunnan, China, and along the Mogok belt, Myanmar

Benita-Lisette Sonntag (1), Myo Min (1), Eva Enkelmann (2), Daniela Kornfeld (3), Lothar Ratschbacher (1), Jörg Pfänder (1), Raymond Jonckheere (1), and István Dunkl (4)

(1) Institut für Geologie, TU Bergakademie Freiberg, Freiberg, Germany (benita-lisette.sonntag@geo.tu-freiberg.de), (2) Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA, (3) Department of Geosciences, University of Tuebingen, Tuebingen, Germany, (4) Geoscience Center, University of Göttingen, Göttingen, Germany

Keywords: crustal flow, Yunnan, Myanmar, fission track, cooling history

The mode of deformation along the eastern boundary of the northward moving Indian block during the Cenozoic is still controversial. Models considered are: (i) southward lateral extrusion of a single crustal block bounded by the right lateral Sagaing fault in Myanmar and the left-lateral Aialo-Shan shear zone (ASSZ) in Yunnan; (ii) southward lateral extrusion of at least two different crustal blocks between the right-lateral S(W)-striking Gaoligong Shan shear zone (GSSZ), the NW-trending Chong Shan shear zone (CSSZ), and the ASSZ. We present a radically different new model: the GSSZ and CSSZ constitute a folded sub-horizontal detachment separating the brittle upper crust from the middle-lower crust represented by the Mogok igneous and metamorphic belt. The kinematics of flow along the detachment was dominantly top-to-S. Folding of the detachment was coeval with and followed top-to-S flow. In the brittle crust, ~E-W shortening is expressed by a fold-thrust belt, and in the ductile crust by L>S tectonites. The deformation pattern is preliminary interpreted as reflecting gravitationally driven flow of upper crustal material from Tibet towards SE-Asia, reminiscent to what is observed by GPS geodesy today.

New Mogok-belt granitoid U-Pb zircon dates span the Early to Late Cretaceous (peaks at ~125; 115; 90, and 65 Ma) and tie the Mogok belt to the Gangdese arc of the Lhasa block. New Tertiary magmatic and metamorphic U-Pb zircon dates are 40-30 Ma, similar to magmatism observed across SE-Asia and similar to the monazite age of dikes that we interpret as pre-tectonic along CSSZ [1]. Published and new $^{40}\text{Ar}/^{39}\text{Ar}$ dates show that rapid cooling, that we relate to onset of high-strain deformation along the shear zones, started at 20-15 Ma [2, 3]. Fission-track and (U-Th)/He thermochronology indicates that its activity continued at least to 6-3 Ma.

References:

- [1] Akciz, S., Burchfiel, B. C., Crowley, J. L., Jiyun, Y., and Liangzhong, C. (2008): Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China: *Geosphere*, Febr. 2008, v. 4, p. 292-314.
- [2] Lin, T.-H., Lo, S.-L., Hsu, F.-J., Yeh, M.-W., Lee, T.-Y., Ji, J.-Q., Wang, Y.-Z., and Liu, D. (2009): $^{40}\text{Ar}/^{39}\text{Ar}$ dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis: *Journal of Asian Earth Science*, v. 34, p. 674-685.
- [3] Zhang, B., Zhang, J., Zhong, D., Yang, L., Yue, Y., and Yan, S. (2012): Polystage deformation of the Gaoligong metamorphic zone: Structures, $^{40}\text{Ar}/^{39}\text{Ar}$ mica ages, and tectonic implications: *Journal of Structural Geology* v. 37, p. 1-18.