

First results from a novel methodological approach for $\delta^{18}\text{O}$ analyses of sugars using GC-Py-IRMS

Michael Zech (1,2), Matthias Saurer (3), Mario Tuthorn (1), Katja Rinne (3), Roland Werner (4), Dieter Juchelka (5), Rolf Siegwolf (3), and Bruno Glaser (2)

(1) Department of Soil Physics and Chair of Geomorphology, University Bayreuth, Bayreuth, Germany, (2) Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, Germany, (3) Paul Scherrer Institut, Villigen, Switzerland, (4) Institut of Agricultural Sciences, ETH Zürich, Switzerland, (5) Thermo Fisher Scientific, Bremen, Germany

Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific $\delta^{18}\text{O}$ analyses is commercially available for more than 10 years, this method is hardly applied by isotope researchers so far. Using GC-Py-IRMS, Zech and Glaser (2009) and Zech et al. (2013; 2012) developed and applied a method, which allows determining $\delta^{18}\text{O}$ of hemicellulose-derived sugar biomarkers extracted from soils and sediments. However, the used methylboronic acid (MBA) derivatization is suitable only for pentoses and deoxyhexoses, not for hexoses.

Here we present first GC-Py-IRMS results for TMS-(trimethylsilyl)-derivatives of plant sap-relevant sugars (glucose, fucose, sucrose, raffinose) and a polyalkohol (pinitol) produced using BSTFA (N,O-Bis(trimethylsilyl)trifluoroacetamide) as the derivatization reagent. Particularly, we focus on sucrose, which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and in tree-ring studies. Replicate analyses of sucrose standards with known $\delta^{18}\text{O}$ values suggest that the $\delta^{18}\text{O}$ measurements are not stable over several days. A calibration (including a drift correction) against an external sucrose standard is hence essential when measuring sample batches. Furthermore, we observed a large dependence of the $\delta^{18}\text{O}$ values on the analyte amount (area), which needs to be considered by a respective correction procedure. Tests with ^{18}O -enriched water do not provide any evidence for oxygen exchange reactions between water and sucrose, glucose and raffinose.

Finally we present the first application of compound-specific $\delta^{18}\text{O}$ analyses from natural samples, namely from seven needle extracts (soluble carbohydrates) from a Siberian study area. Both the $\delta^{18}\text{O}$ amplitude and values of sucrose are considerably higher (32.1‰ to 40.1‰) compared to the $\delta^{18}\text{O}$ amplitude and values of bulk needle extract (24.6‰ to 27.2‰). We found positive correlation (although statistically not significant) for $\delta^{18}\text{O}$ of sucrose ($n = 7$) and bulk $\delta^{18}\text{O}$ ($R = 0.62$), $\delta^{13}\text{C}$ of sucrose ($R = 0.55$) and maximum day temperature ($R = 0.58$) and negative correlation for $\delta^{18}\text{O}$ of sucrose and cloudiness ($R = -0.80$). This highlights the great potential of compound-specific $\delta^{18}\text{O}$ analyses of sucrose for (paleo-) climate studies.

Zech, M., Glaser, B., 2009. Compound-specific $\delta^{18}\text{O}$ analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. RCM 23, 3522-3532.

Zech, M., Tuthorn, M., Glaser, B., Amelung, W., Huwe, B., Zech, W., Zöller, L., Löffler, J., 2013. Natural abundance of ^{18}O of sugar biomarkers in topsoils along a climate transect over the Central Scandinavian Mountains, Norway. JPNSS, in press.

Zech, M., Werner, R., Juchelka, D., Kalbitz, K., Buggle, B., Glaser, B., 2012. Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose derived sugars during litter decomposition. Org Geochem 42, 1470-1475.