

The Rungwe Pumice (Rungwe, Tanzania): a wind-still Plinian eruption

Karen Fontijn (1), Gerald Ernst (1), Costanza Bonadonna (2), Marlina Elburg (1), Evelyne Mbede (3), and Patric Jacobs (1)

(1) Department of Geology and Soil Science, Ghent University, Ghent, Belgium, (2) Section des sciences de la Terre et de l'environnement, Université de Genève, Geneva, Switzerland, (3) Ministry of Communication, Science and Technology, Dar es Salaam, Tanzania

The Late Holocene eruptive history of Rungwe Volcano in South-West Tanzania indicates a dominance of sustained explosive eruptions ranging from violent Strombolian to Plinian scale, generating extensive pumice fall deposits. The most significant deposit is that of the Rungwe Pumice, a ca. 4 ka old Plinian pumice fall deposit of trachytic composition. The comprehensive documentation in the field of the preserved part of the deposit enables us to estimate a set of crucial eruptive parameters. A maximum eruption column height H_T of 30.5 – 35 km, associated with a peak mass discharge rate of $2.8\text{--}4.8 \times 10^8$ kg/s, is suggested by empirical models. These values are consistent with estimations from TEPHRA2 inversion on grain size data, which suggest a maximum H_T of 33 ± 4 km, corresponding to mass discharge rates of $2.3\text{--}6.0 \times 10^8$ kg/s. The total grain size distribution of the preserved part of the deposit shows Md_f of -1.5f to -2.4f. The deposit thinning trend can be extrapolated far beyond on-land exposures using lake core data from Lake Malawi. Volume estimates from thickness data range between 3.2 and 5.8 km³, corresponding to an erupted mass of $1.1\text{--}2.0 \times 10^{12}$ kg, which is consistent with TEPHRA2 inversion (1.1×10^{12} kg). The deposit dispersal is consistent with an eruption happening during nearly no-wind conditions. The plume corner is estimated at 11 – 12 km from the vent. The Rungwe Pumice eruption clearly classifies as Plinian (VEI 5, Magnitude 5 – 5.3). The eruption intensity gradually increased during the opening phase, after which a high discharge rate was maintained throughout the eruption. A lack of pyroclastic density current deposits, including in proximal-to-medial locations, suggests that there was no fountain collapse, which may be caused by the extremely low pumice density of order of 400 – 450 kg/m³.