

Super rogue waves in weakly and fully nonlinear simulations

Alexey Slunyaev (1,2), Efim Pelinovsky (1,2,3), Anna Sergeeva (1,2), Amin Chabchoub (5), Norbert Hoffmann (5), Miguel Onorato (6,7), and Nail Akhmediev (8)

(1) Institute of Applied Physics, Nizhny Novgorod, Russia (slunyaev@hydro.appl.sci-nnov.ru), (2) Nizhny Novgorod State Technical University, N.Novgorod, Russia, (3) National Research University – Higher School of Economics, N.Novgorod, Russia, (4) Far Eastern Federal University, Sakhalin Branch, Yuzhno-Sakhalinsk, Russia, (5) Mechanics and Ocean Engineering, Hamburg University of Technology, Hamburg, Germany, (6) Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy, (7) Istituto Nazionale di Fisica Nucleare, INFN, Torino, Italy, (8) Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra, Australia

The rogue wave solutions of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered.

A higher accuracy of wave propagation in space is reached using the modified NLS equation (MNLS) also known as the Dysthe equation. This numerical modelling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al [1]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations.

These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

[1] A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, and N. Akhmediev, Observation of a hierarchy of up to fifth-order rogue waves in a water tank. *Phys. Rev. E* 86, 056601 (2012).