

Recent advances in environmental monitoring using commercial microwave links

Pinhas Alpert (1), Noam David (1), Hagit Messer-Yaron (2), and Rana Samuels (1)

(1) Tel-Aviv University, Tel-Aviv University, Geophysical, Atmospheric & Planetary Sciences, Tel-Aviv, Israel
(pinhas@post.tau.ac.il, +972 3 640 9282), (2) Tel-Aviv University, Faculty of Engineering, Tel-Aviv, Israel

The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor.

As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel.

In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed.

This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the United States- Israel BINA-TIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342).

References:

N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", *Atmos. Chem. Phys.*, 9, 2413-2418, 2009.

A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert, "Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", *Atmospheric Research* 104–105, 119–127, 2012.

N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", *Atmos. Meas. Tech. Discuss.*, 5, 5725-5752, 2012.