

The effect of solar wind parameters on proton backscattering from the Moon: Chandrayaan-1/SARA observations

Charles Lue (1,2), Yoshifumi Futaana (1), Stas Barabash (1), Martin Wieser (1), Peter Wurz (3), and Anil Bhardwaj (4)

(1) Swedish Institute of Space Physics, Box 812, SE-98128 Kiruna, Sweden (charles.lue@irf.se), (2) Department of Physics, Umeå University, Linnaeus väg 24, SE-90187 Umeå, Sweden, (3) Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland, (4) Space Physics Laboratory, Vikram Sarabhai Space Center, Trivandrum 695 022, India

Backscattered solar wind protons from the lunar surface were first observed by Kaguya [1], at a backscattering efficiency of 0.1% – 1% of the incident solar wind proton flux. Subsequent observations by Chandrayaan-1 [2] and IBEX [3] revealed that a larger fraction (10% – 20%) of the solar wind protons is backscattered as energetic neutral hydrogen atoms. In the present study, we use observations from the Solar Wind Monitor (SWIM) of SARA on Chandrayaan-1 to investigate the backscattered proton fraction's dependence on the solar wind parameters. Our observations indicate a large variability in the proton backscattering fraction that strongly depends on the solar wind velocity (\sim 0.01% to \sim 1% for solar wind velocities of 250 to 550 km/s). The observed backscattered proton fluctuation agrees well with a model of proton survivability against neutralisation as a function of impact velocity, available from theoretical and laboratory studies [4]. This dependence on impact velocity is important to take into account when modelling the interaction between airless bodies and their surrounding plasma. An enhanced understanding of the particle-surface interaction may open up for remotely determining properties of the surface and/or the impacting particles.

- [1] Saito, Y. et al. (2008), *Geophys. Res. Lett.*, 35, L24205, doi:10.1029/2008GL036077.
- [2] Wieser, M. et al. (2009), *Plan. Space Sci.*, 57(14), 2132-2134, doi:10.1016/j.pss.2009.09.012.
- [3] McComas, D.J. et al. (2009), *Geophys. Res. Lett.*, 36, L12104, doi:10.1029/2009GL038794.
- [4] Niehus, H. et al. (1993), *Surf. Sci. Rep.* 17(4), 213-303, doi:10.1016/0167-5729(93)90024-J.