

Developing local climate services to support climate adaptation policies for Greek region

Ioannis Tsanis (1,2), Manolis Grillakis (2), Aristeidis Koutroulis (2), and Daniela Jacob (3)

(1) McMaster University, Department of Civil Engineering, Hamilton, Canada, (2) Technical University of Crete, Environmental Engineering Dept., Chania, Greece, (3) Climate Service Center, Hamburg - Germany

The main aim of the ECLISE EU FP6 project is to improve the delivery of climate services. The realization of climate service to Greek stakeholders is attempted in several sectors of interest within the project framework. High interest was raised for climate information related to solar energy, extremes of precipitation and temperature and information related to water resources. Technical University of Crete, partner of the ECLISE project has the role of delivering this information to relevant end users in the form of report and datasets with appropriate spatiotemporal resolution, as well as communication of the embedded uncertainties. Currently, simulations from 10 RCMs in the frame of ENSEMBLES FP6 under A1B emission scenario at a spatial resolution of 25km and data from 3 GCMs in the frame of WATCH FP6 for A2 and B1 emission scenarios interpolated at a spatial resolution of 0.50 were used for the analysis. Additionally, RCM runs of RCA model at various spatial resolutions (50, 25, 12.5 and 6km) were provided from SMHI in order to study the effect of model scale on the ability to simulate the present climate. The analysis of the climate simulations will assist in the long-term strategic water resources planning and climate hazard mitigation. Regarding solar energy information, historical and projected radiation data from 11 RCMs in the frame of ENSEMBLES FP6 under A1B emission scenario at a spatial resolution of 25km were downloaded for comparison with local measurements. The produced information will assist the future solar energy investments planning and security.