

Analysis of CO₂/H₂O Concentration and Flux Characteristics with The Beijing Meteorology Tower Data

Xiaoman Liu

Institute of Atmospheric Physics, State Key Laboratory of Atmospheric Boundary Layer, Physics and Atmospheric Chemistry (LAPC), Beijing, China (lxm@mail.iap.ac.cn)

CO₂/H₂O concentration, wind speed and temperature were measured with CSAT3 3D - sonic anemometers and Li-7500 open path CO₂/H₂O analyzer at 7 different heights of the Beijing 325m meteorology tower from May to November, 2012.

Based on the collected data and the use of eddy covariance method, the diurnal and monthly dynamics of profiles and fluxes of CO₂/H₂O were analyzed and calculated with EdiRe (<http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/>).

The profile of CO₂ concentration showed S pattern. Before the heating period, CO₂ concentration was normally between 300-500 ppm (May. to Oct.), and rose to 500-600 ppm in the heating period (from Nov.). The result of CO₂ flux showed that urban atmospheric CO₂ was net emissions. There was a positive relationship between CO₂ flux and temperature. With respect to sensible heat flux and latent heat flux, CO₂ flux is more influenced by human impact.

Key Words: Meteorology Tower; CO₂/H₂O; Concentration; Flux; Eddy Convariance