

Multi-seasonal OH and (HO₂+RO₂) observations in the coastal Antarctic boundary layer

Anna Jones (1), Neil Brough (1), Greg Huey (2), Dave Tanner (2), and Eric Wolff (1)

(1) British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, (2) School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

The OH radical is a central driver of tropospheric chemistry through its role as an atmospheric oxidant. At high latitudes, the “classic” primary OH source (via reaction of electronically excited O(¹D) atoms with water molecules) is enhanced by the influence of HO_x precursors (HCHO, H₂O₂, HONO) emitted from the snowpack. Further, snowpack-released NO_x influences OH:HO₂ and OH:RO₂ ratios as well as concentrations.

During 2007, a chemical ionization mass spectrometer (CIMS) was operated at Halley research station in coastal Antarctica throughout a full calendar year. Measurements for OH and (HO₂+RO₂) were made in each season. Here we present the data, and compare them with equivalent measurements at other polar (Arctic and Antarctic) locations. A first interpretation is made in terms of the prevailing meteorological conditions and ambient chemistry.