

Diatom-inferred $\delta^{18}\text{O}$ of a Bolivian paleolake during the last deglaciation (18.6-11.7 ka): impact of the paleolake evaporation and water recycling on the isotopic composition of Andean glaciers

Benjamin Quesada (1,2), Florence Sylvestre (1), Françoise Vimeux (2,3), Jessica Black (1), Christine Paillès (1), Corinne Sonzogni (1), Anne Alexandre (1), Pierre-Henri Blard (4), and Hélène Bruneton (1)

(1) Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE), (benjamin.quesada@lsce.ipsl.fr), (2) Laboratoire des Sciences du Climat et de l'Environnement (LSCE), France, (3) Laboratoire HydroSciences Montpellier (HSM), Montpellier, France., (4) Centre de Recherches Pétrographiques et Géochimiques (CRPG), Nancy-Université, Vandoeuvre-lès-Nancy, France

During the last deglaciation, on the Bolivian Altiplano ($\sim 16^\circ\text{S}$), a wide paleolake covering at least 51,000 km², named lake Tauca reached its maximum highstand between 16.5 and 15 ka. Overlooking this site, an ice-core from the Sajama ice-cap (covering the last 25,000 years) evidenced an oxygen 18 isotopic excursion of $+7\text{\textperthousand}$ matching with the end of the Tauca phase, and more pronounced by about $+5\text{\textperthousand}$ compared with the neighboring Andean ice-cores isotopic records. Here we i) provide a new and original experimental use of lacustrine diatoms ($n=21$) at medium resolution (~ 300 years) together with ostracods ($n=4$) for isotopic $\delta^{18}\text{O}$ paleolake water reconstruction ($\delta^{18}\text{O}_{\text{lake}}$), ii) detail a simple hydro-isotopical model with constraints given by literature to explain the strong features in the $\delta^{18}\text{O}_{\text{lake}}$ signal and iii) explore whether the Tauca paleolake could contribute as a moisture source to precipitation at Sajama site when it disappears at 14.2 ka.

Based on a new chronostratigraphy, the sedimentary sections cover lake Tauca phase (~ 18.7 -14.1 ka) and lake Coipasa phase (~ 12.6 -11.7 ka). On centuries time scale, strong features consistently appear in $\delta^{18}\text{O}_{\text{lake}}$: an abrupt decrease during lake filling phases immediately followed by an increase during lake level stable phases. The highest variation occurred at ~ 15.9 ka with a $\delta^{18}\text{O}_{\text{lake}}$ fall of about $\sim 14\text{\textperthousand}$ concomitant with lake Tauca highstand, and followed by a $\delta^{18}\text{O}_{\text{lake}}$ increase of a similar amplitude four centuries later. We also show that this unexpected re-enrichment of $\delta^{18}\text{O}_{\text{lake}}$ can be partly explained with a simple hydro-isotopic model, based on Craig and Gordon's model, with coherent constraints by a re-equilibration of isotopic fluxes in lake steady-state. Based on an evaporative lake model and a simple water stable isotopic balance between two potential moisture sources for Sajama precipitation (eastward advected moisture and lake evaporation), we show that total or partial (from 5 to 60%) evaporation of the lake during the Tauca regression phase could explain the extra 5\textperthousand Sajama isotopic excursion. These results suggest that local hydrological cycle of lacustrine areas could substantially affect the interpretation of near-by archives of past isotopic composition of precipitation (e.g ice cores or speleothems).