



## Kinematics of the Pamir and Hindu Kush regions from GPS geodesy

Rebecca Bendick (1)

(1) Department of Geosciences, University of Montana, Missoula, MT United States (bendick@mso.umt.edu), (2) Institute of Geology, Earthquake Engineering and Seismology of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan, (3) Research Station of the Russian Academy of Sciences, Bishkek, Kyrgyzstan, (4) Department of Geological Sciences, University of Colorado, Boulder, CO, USA, (5) National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan

GPS velocities measured in the Pamir and surrounding regions show a total of  $\sim$ 25 mm/yr of northward relative motion between stable Pakistan and Eurasia. The convergence budget is partitioned into 10-15 mm/yr of localized shortening across the Trans-Alai Thrust, which bounds the Pamir on the north, where southward subduction of intact lithosphere seems to occur. Another 10-15 mm/yr of shortening is distributed across the Chitral Himalaya and Hindu Kush, suggesting that Hindu Kush seismicity might be related to subduction of Indian lithosphere. Modest shortening at  $<5$  mm/yr occurs north of the Trans-Alai Thrust, across the South Tien Shan and between the Ferghana Valley and Eurasia. As much as 5 mm/yr, and perhaps 10 mm/yr, of east-west extension occurs within the Pamir, and is matched by a comparable amount of east-west shortening in the Tajik Depression. The localization of shortening to the margins of the Pamir combined with observations of distributed internal extension implies that the east-west vertically averaged, horizontal compressive normal stress is smaller than the north-south compressive perhaps because material from the elevated Pamir is free to move into the low-elevation Tajik Depression and Tarim Basin.