

Regional-scale integration of hydrological and geophysical data using Bayesian sequential simulation: application to field data

Paolo Ruggeri (1), James Irving (1), Erwan Gloaguen (2), and Klaus Holliger (1)

(1) Applied Geophysics Group, Center for Research of the Terrestrial Environment, UNIL, Switzerland

(paolo.ruggeri@unil.ch), (2) Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, INRS, Quebec, Canada (erwan.gloaguen@ete.inrs.ca)

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches to the regional scale still represents a major challenge, yet is critically important for the development of groundwater flow and contaminant transport models. To address this issue, we have developed a regional-scale hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure. The objective is to simulate the regional-scale distribution of a hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, our approach first involves linking the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. We present the application of this methodology to a pertinent field scenario, where we consider collocated high-resolution measurements of the electrical conductivity, measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, estimated from EM flowmeter and slug test measurements, in combination with low-resolution exhaustive electrical conductivity estimates obtained from dipole-dipole ERT measurements.