

Multiphase Flow in Porous Rock imaged under dynamic flow conditions with fast X-ray computed micro-tomography

Steffen Berg (1), Holger Ott (1), Stephan Klapp (1), Alex Schwing (1), Rob Neiteler (1), Niels Brussee (1), Axel Makurat (1), Leon Leu (2), Frieder Enzmann (2), Jens-Oliver Schwarz (2), Michael Kersten (2), Sarah Irvine (2), and Marco Stampanoni (2)

(1) Shell Global Solutions International B.V., Kesslerpark 1, 2288 GS Rijswijk, The Netherlands (steffen.berg@shell.com), (2) Geosciences Institute, Johannes-Gutenberg University, 55099 Mainz, Germany

Pore scale events in multiphase flow in porous rock have been directly imaged in real-time by using fast synchrotron-based X-ray computed micro tomography. In the past, pore scale fluid displacements in porous media could only be imaged under quasi-static conditions where at scanning times of several minutes to hours, fluid distributions were subject to capillary re-distribution. Here, for the first time, pore-scale displacement events in porous rock were imaged in-situ at real-time in natural sandstone rock under dynamic conditions, i.e. under flow, where the pressure gradient and the visco-capillary balance were maintained during scanning.

The two elementary processes, Haines jumps in drainage and snap-off in imbibition were studied in detail. We found that most Haines jump events do not displace the wetting phase pore by pore, but typically involve 10-20 individual pores. We also found that 64% of the externally applied work is actually dissipated during these jumps where approximately 36% is converted into interfacial energy.