

What do nm-scale characterizations of silicate surface tell us about macroscopic dissolution rate laws? New insights based on diopside

Damien Daval (1,2), Roland Hellmann (3), Giuseppe Saldi (2), Richard Wirth (4), and Kevin Knauss (2)

(1) LHyGeS-CNRS, University of Strasbourg, Strasbourg, France (ddaval@unistra.fr), (2) ESD-LBNL, UC Berkeley, Berkeley, United States, (3) ISTerre, University of Grenoble 1, Grenoble, France, (4) German Research Centre for Geosciences, GFZ, Germany

The interfacial zone between a bulk fluid and a mineral surface is where all exchange of matter and energy occurs during chemical weathering. However, our knowledge is still limited with respect to understanding where and how the rate-determining dissolution reactions take place. A complicating factor is the commonplace formation of amorphous Si-rich surface layers (ASSL), which may hinder contact between the fluid and the mineral surface. Previous studies showed that the protective ability of ASSL critically depended on properties inherited from the parent silicate mineral, which remain yet to be unraveled.

To address the role of ASSL, we investigated the dissolution of a common silicate (diopside), and related the bulk dissolution rate (determined in classical flow-through experiments) with the nanoscale dissolution rate and surface chemistry of its individual prevalent faces (determined by combining vertical scanning interferometry (VSI) measurements of the topography of reacted cleavages and transmission electron microscopy (TEM) characterizations of the ASSL). While ASSL were evidenced on all of the investigated faces, only those formed on (110) and (1-10) were passivating, thereby controlling the reactivity of the underlying faces. The (110) and (1-10) faces intersect the highest density of Mg-O-Si and Fe-O-Si bonds, and this specificity may explain the passivating behavior of the corresponding ASSL. Moreover, we evidenced an inverse relation between aqueous silica concentration and the bulk dissolution rate of crushed diopside grains, which suggest that the (110) and (1-10) faces are predominant in a powder. By considering ASSL as a separate phase that can control silicate dissolution rates, extrapolated laboratory-based rates at conditions relevant to the field can be lowered by up to several orders of magnitude, thereby decreasing the large gap between laboratory and natural rates. This has important implications for more accurately modeling chemical weathering reactions, so important today for the C cycle and CO₂ sequestration.