

Wind Stress Variation over the horizontally variable Roughness of Ocean Surface: Theory and Experiment

Lev Ostrovsky (1), Mikhail Charnotskii (2), and Stanislav Ermakov (3)

(1) Zel Tech. LLC and NOAA/ETL, Boulder, CO, United States (lev.a.ostrovsky@noaa.gov), (2) Zel Tech. LLC, Boulder, CO, United States, (3) Institute of Applied Physics, Russian Acad. Sci., Nizhny Novgorod, Russia

We consider the effect of localized variations of the sea surface wave roughness on the near-surface turbulent wind. These variations can be caused by oil, surfactants, inhomogeneous currents, internal waves, etc. The corresponding transition effects in the turbulent wind over the sea is a very difficult problem, if only due to uncertainties in the turbulent closure models for the non-stationary and inhomogeneous flows. Here we suggest some practical schemes for calculating wind variation near the surface, the average short-wave roughness of which is varying in space and time. They include a generalized two-layer model, three-layer model, and a direct approach based on the solution of the Reynolds-type equations for the air flow velocity and turbulent kinetic energy. Laboratory experiments in a wind-wave tank are also described and compared with the theory.