

Investigation of CO₂ release pressures in pipeline cracks

Paul Gorenz, Nicoleta Herzog, and Christoph Egbers

Dept. of Aerodynamics and Fluid Mechanics (LAS), BTU Cottbus, Cottbus, Germany (gorenpau@tu-cottbus.de)

The CCS (Carbon Capture and Storage) technology can prevent or reduce the emissions of carbon dioxide. The main idea of this technology is the segregation and collection of CO₂ from facilities with a high emission of that greenhouse gas, i.e. power plants which burn fossil fuels. To segregate CO₂ from the exhaust gas the power plant must be upgraded. Up to now there are three possible procedures to segregate the carbon dioxide with different advantages and disadvantages. After segregation the carbon dioxide will be transported by pipeline to a subsurface storage location. As CO₂ is at normal conditions (1013,25 Pa; 20 °C) in a gaseous phase state it must be set under high pressure to enter denser phase states to make a more efficient pipeline transport possible. Normally the carbon dioxide is set into the liquid or supercritical phase state by compressor stations which compress the gas up to 15 MPa. The pressure drop makes booster stations along the pipeline necessary which keep the CO₂ in a dens phase state. Depending on the compression pressure CO₂ can be transported over 300km without any booster station.

The goal of this work is the investigation of release pressures in pipeline cracks. The high pressurised pipeline system consists of different parts with different failure probabilities. In most cases corrosion or obsolescence is the reason for pipeline damages. In case of a crack CO₂ will escape from the pipeline and disperse into the atmosphere. Due to its nature CO₂ can remain unattended for a long time. There are some studies of the CO₂ dispersion process, e.g. Mazzoldi et al. (2007, 2008 and 2011) and Wang et al. (2008), but with different assumptions concerning the pipeline release pressures. To give an idea of realistic release pressures investigations with the CFD tool OpenFOAM were carried out and are presented within this work.

To cover such a scenario with an accidental release of carbon dioxide a pipeline section with different diameters and leakage release holes were modelled. This pipeline section is 10m long with the leakage hole in the middle. Additionally a small environment subdomain is simulated around the crack. For computation a multiphase solver was utilised. In a first step incompressible and isothermal fluids with no phase change were assumed.