

Oxygen isotopes in authigenic quartz from massive salt deposits

Stanisław Hałas (1), Ana-Voica Bojar (2), and Tadeusz Marek Peryt (3)

(1) Mass Spectrometry Laboratory, UMCS, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland, (2) Department of Geology, Salzburg University, A-5020 Salzburg and Department of Mineralogy, Universalmuseum, A-8045 Graz, Austria, (3) Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warsaw, Poland

We describe a new geochemical tool that could provide temperatures of ancient basins in which massive evaporites were deposited: the oxygen isotope composition of fine crystalline quartz found in large halite bodies. Such quartz is well preserved from post-depositional alterations and it can be relatively easily separated. For the purpose of this study, five halite samples were selected from four various evaporite basins, spanning in age from the Early Cambrian to the Late Jurassic. The obtained isotope temperatures refer to locations where evaporites were deposited, i.e. in subtropical zones of the Earth, as it may be estimated from continental distribution during Phanerozoic times.

Reasonable temperatures are obtained, with an assumption for the $\delta^{18}\text{O}$ of brines ranging from $-1\text{\textperthousand}$ to 0\textperthousand during halite deposition. The assumption of higher $\delta^{18}\text{O}$ values leads to unrealistic temperatures. Thus our isotope data confirm high uniformity of oxygen isotopic composition of oceanic water over whole Phanerozoic.