

A potential vorticity perspective on the motion of mid-latitude surface cyclones: the example of the winter storm Xynthia

Gwendal Rivi  re (1), Philippe Arbogast (1), Guillaume Lapeyre (2), and Karine Maynard (1)

(1) CNRS, M  t  o-France, CNRM/GMAP/RECYF, TOULOUSE cedex 1, France (gwendal.riviere@meteo.fr), (2) Laboratoire de M  t  orologie Dynamique, IPSL, ENS, CNRS, UPMC, Paris, France.

Mid-latitude surface cyclones are commonly observed to move across the mean flow from the equator to the pole and to undergo a strong and rapid deepening when they cross the axis of the large-scale jet stream. The purpose of the present study is to validate a recent theory that may explain this cross-jet motion which is a generalization of the so-called beta drift in the mid-latitude baroclinic context. According to this theory, the key parameter controlling the movement of a surface cyclone across the mean tropospheric jet is the vertical-average potential vorticity (PV) gradient associated with the jet. To test this theoretical result, numerical sensitivity experiments are performed using the M  t  o-France global operational forecast model ARPEGE-IFS for the particular case of the storm Xynthia (26–28 February 2010). The control forecast, starting from the operational analysis almost 2 days before the storm hit France, represents the trajectory of the storm quite well, together with the deepening during the crossing of the large-scale upper-level jet axis. A PV-inversion tool is used to modify the vertical-average PV gradient at the initial time. As expected from the theory, when the PV gradient is intensified, there is a quicker displacement of the surface cyclone toward the jet axis and the jet-crossing phase occurs earlier than in the control forecast. The opposite occurs for a reduced PV gradient. A dynamical interpretation is provided in terms of upper-levels PV anomalies generated by Rossby wave radiation.