

Stomatal proxy record of CO₂ concentrations during the Last Termination demonstrates dynamic climate behaviour and an important role for CO₂.

Margret Steinthorsdottir (1), Barbara Wohlfarth (1), Malin E. Kylander (1), Maarten Blaauw (2), and Paula J. Reimer (2)

(1) Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, SE 109 61 Stockholm, Sweden (margret.stein@gmail.com), (2) School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom

We present a new stomatal proxy-based record of CO₂ concentrations spanning Greenland Interstadial 1 (Allerød pollen zone, GI-1a to 1c), Greenland Stadial 1 (Younger Dryas pollen zone, GS-1) and the first part of the Holocene (Preboreal pollen zone). The calibrated atmospheric CO₂ concentrations are based on *Betula nana* (dwarf birch) leaves from a fossil lake sedimentary sequence in south-eastern Sweden. The stomatal proxy method relies on the inverse relationship between stomatal density on plant leaves and atmospheric CO₂ concentrations to reconstruct variations in past CO₂ concentrations.

The record presented here demonstrates that the overall pattern of CO₂ evolution during this period was dynamic, with significant abrupt fluctuations in CO₂ concentration when the climate moved from interstadial to stadial state and vice versa. The cooling at the GI-1/GS-1 transition was preceded by an abrupt warming, and the warming at the GS-1/Holocene transition was preceded by an abrupt cooling. This scenario is in contrast to CO₂ records reconstructed from air bubbles trapped in ice, which indicate a gradual increase in concentrations, but largely in alignment with previously published stomatal proxy-based CO₂ records. A new loss-on-ignition chemical record (used here as a proxy for temperature), from the same locality, lends independent support to the CO₂ record.