

Effective diffusivity of passive scalars in rotating flows

paola rodriguez imazio (1) and Pablo Mininni (2)

(1) Universidad de Buenos Aires, IFIBA, Departamento de Fisica, Buenos Aires, Argentina (paolaimazio@df.uba.ar), (2) National Center of Atmospheric Research, NCAR, Boulder, Colorado, USA

We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotation axis are obtained by studying the diffusion of an imposed initial profile for the passive scalar, and calculated by measuring the scalar average concentration and the average spatial flux as a function of time. The Rossby and Schmidt numbers are varied to quantify their effect on the effective diffusion. It is found that rotation reduces scalar diffusivity in the perpendicular direction. The perpendicular diffusion can be estimated from mixing length arguments using the characteristic velocities and lengths perpendicular to the rotation axis. Deviations are observed for small Schmidt numbers, for which turbulent transport decreases and molecular diffusion becomes more significant.