

A legacy of Hadean silicate differentiation inferred from Hf isotopes in Eoarchean rocks of the Nuvvuagittuq supracrustal belt (Québec, Canada)

Martin Guitreau (1), Janne Blichert-Toft (1), Stephen J. Mojzsis (1,2), Antoine S.G. Roth (3), and Bernard Bourdon (1)

(1) Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, 46 Allée d'Italie, 69007 Lyon, France, (2) Department of Geological Sciences, University of Colorado, UCB 399, 2200 Colorado Avenue, Boulder, Colorado 80309-0399, USA, (3) Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland

New Lu-Hf isotopic data for mafic and felsic rocks from the Nuvvuagittuq supracrustal belt (NSB) in northern Québec (Canada) yield an Eoarchean age of 3864 ± 70 Ma consistent with both zircon U-Pb and whole-rock ^{147}Sm - ^{143}Nd chronology, but in disagreement with ca. 4400 Ma ages inferred from the ^{146}Sm - ^{142}Nd chronometer (O’Neil et al., 2008). The Lu-Hf result is interpreted as the mean emplacement age of the different autochthonous units of the NSB. An observed alignment of the data along a Lu-Hf “scatterchron” precludes a Hadean age for the NSB because its isotopic characteristics appear to be controlled by long-term radiogenic ingrowth. Emplacement of the NSB in the Hadean (e.g., 4362 Ma; re-calculated in Kinoshita et al., 2012) should have caused age differences of hundreds of millions of years to manifest as strong deviations from the Lu-Hf scatterchron. Combined Lu-Hf and Sm-Nd data on the same NSB amphibolite samples (Ca-poor cummingtonite- and hornblende-bearing) define a mixing hyperbola at ca. 3800 Ma with end-member compositions representative of the compositional groups identified for these lithologies (O’Neil et al., 2011). Anomalously low ^{142}Nd / ^{144}Nd values relative to Bulk Silicate Earth are endemic to “low- TiO_2 ” amphibolites; this is attributable to an ancient multi-stage history of their mantle source as indicated by rare-earth element patterns. Modeling shows that the ^{142}Nd / ^{144}Nd deficits could have developed in response to a re-fertilization episode within a mantle domain depleted by primordial crust extraction at 4510 Ma.