

Production of nitrogen oxides by lightning in a methane-rich early atmosphere

Karina Navarro (1), Rafael Navarro-Gonzalez (1), and Christopher McKay (2)

(1) Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Mexico
(navarro@nucleares.unam.mx), (2) NASA Ames Research Center, Moffett Field, CA 94035, USA

The composition of the early Earth's atmosphere is not known. Assuming that rapid weathering of fragments from impacts took place and efficient sequestration of carbon occurred in the Earth's mantle, the early atmosphere would have been mostly composed of molecular nitrogen with low concentrations of carbon dioxide (less than percent). In order to preserve the existence of oceans, it is required to warm up the atmosphere almost exclusively with methane [1]. Predicted methane concentrations in the distant past range from few ppm to several thousand ppm. Photochemical models predict a production rate of hydrogen cyanide of the order of 6 Tg/yr in a 3 percent carbon dioxide atmosphere with 1000 ppm of methane [2]. When the atmospheric levels of carbon dioxide dropped to 0.3 percent but with the methane levels of 1000 ppm, the production rate of hydrogen cyanide increased up to 20 Tg/yr [2]. The nitrogen fixation rate by lightning in atmospheres dominated by molecular nitrogen, less than 10 percent carbon dioxide, and the absence of methane has been reported by Navarro-Gonzalez et al. [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.5 percent of carbon dioxide with methane concentrations from 0 to 10,000 ppm in molecular nitrogen. Our results show that the main nitrogen fixation products by lightning are nitric oxide, nitrous oxide and methyl nitrite. Preliminary estimates indicate that the production of nitric oxide is not dependent on the initial concentration of methane and that its production rate decreases from about 0.02 Tg/yr to about 0.003 Tg/yr in atmospheres ranging from 10 to 0.5 percent of carbon dioxide, respectively. Nitrous oxide is produced by lightning in the contemporaneous oxygenated Earth's atmosphere [4], but has not been detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [5]. This is the first report for the production of methyl nitrate by lightning in the early atmosphere. Further analyses are underway to accurately determine the production rates of these nitrogen oxides by lightning, and to understand their role for chemical evolution and early Earth's climate.

Zahnle, K. J. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere. *J. Geophys. Res.* 91, 2819-2834 (1986); [2] Tian, F., Kasting, J.F., and Zahnle, K. Revisiting HCN formation in Earth's early atmosphere. *Earth Planet. Sci. Lett.* 308, 417-423 (2011); [3] Navarro-González, R., McKay, C.P. and Nna Mvondo, D. A possible nitrogen crisis for archaean life due to reduced nitrogen fixation by lightning. *Nature* 412, 61-64 (2001); [4] Levine, J.S., Hughes, R.E., Chameides, W.L., and Howell, W.E. N₂O and CO Production by Electrical Discharges: Atmospheric Implications, *Geophys. Res. Lett.*, 6, 557-559 (1979); [5] Nna Mvondo, D. Navarro-González, R, McKay, C.P., Coll, P. and Raulin, F. Production of nitrogen oxides by lightning and corona discharges in simulated early Earth, Venus and Mars environments. *Adv Space Res.* 27(2), 217-223 (2001).