

Numerical modeling of sedimentation controls on the growth of the fold-and-thrust belts

Charlotte Fillon (1), Ritske S. Huismans (2), and Peter van der Beek (1)

(1) Institut des Sciences de la Terre, Université Joseph Fourier, Grenoble, France, (2) Bergen University, Earth Sciences, Bergen, Norway (Ritske.Huismans@geo.uib.no)

The main objective of this study is to understand the coupling between tectonics and surface processes during formation of a thin-skinned fold-and-thrust belt. We focus on the controls of syn-orogenic sedimentation on thrust development during wedge building. We use an Arbitrary Lagrangian Eulerian finite-element model (Sopale) to model the thin-skinned fold-and-thrust belt at upper crustal scales (7 km depth and 200 km length). Sopale takes into account the main features and processes that influence the development of a fold-and-thrust belt including detachment horizons, strain-softening, flexural isostasy, and erosion and sedimentation processes. Initial, more conceptual modeling focuses on wedge development coupled with syn-orogenic sedimentation. Wedge-top sedimentation directly affects the taper angle and clearly modifies the behavior of the wedge; a clear relationship between average thrust-sheet length and the thickness of syn-tectonic sediments is highlighted. Subsequently, a sediment cover that progrades towards the foreland with time is added to reproduce the late syn-orogenic burial of the southern Pyrenean fold-and-thrust belt by conglomerates and demonstrate that wedge top sedimentation can explain the out-of-sequence thrust belt activity in the southern central Pyrenees.