

More than 30 large earthquakes broke the Fucino faults (Central Italy) in synchrony in the last 12 ka, as revealed from in situ ^{36}Cl exposure dating

Lucilla Benedetti (1), Isabelle Manighetti (2), Yves Gaudemer (3), Robert Finkel (4), Jacques Malavieille (5), Khemrak Pou (1), and Didier Bourlès (1)

(1) Aix-Marseille Université, CEREGE CNRS-IRD UMR 34, 13545 Aix en Provence, France, (2) GeoAzur, CNRS, UNS, OCA Nice, France, (3) IPGP, Équipe de Tectonique, Sorbonne Paris Cité, Univ.Paris Diderot, UMR 7154, CNRS, 75005 Paris, France, (4) Earth and Planetary Science Department University of California, Berkeley, USA, (5) Géosciences Montpellier UMR CNRS 5243, Université Montpellier Place E. Bataillon, CC60, 34095 Montpellier cedex 5.

We recover the Holocene earthquake history of 7 large seismogenic normal faults belonging to the Fucino north and Fucino south systems in Central Italy. We collected 800 samples from the well-preserved limestone scarps of the faults and modeled their ^{36}Cl concentrations to derive their seismic exhumation history. We found that > 30 large earthquakes broke the faults in synchrony over the last 12 ka. The 7 faults released strain over the same periods of time 12-9 ka, 5-3 ka and 2-1 ka. On all faults, the strain accumulation and release occurred in 3-6 ka long supercycles, each included a 3-5 ka-long phase of gentle ($\leq 1 \text{ mm/yr}$) strain accumulation in relative quiescence, followed by a cluster of 3-4 large earthquakes or earthquake sequences that released most of the strain in less than 1-2 ka. The large earthquakes repeated every $0.5 \pm 0.3 \text{ ka}$ during the paroxysmal phases and every $4.3 \pm 0.9 \text{ ka}$ between those phases. Earthquakes on the northern faults produced twice larger surface slips (2 m) and had larger magnitudes (Mw 6.2-6.7) than those on the southern faults (Mw 5.7-6.6). On most faults, the relative strain level was found to control the amount of slip and the time of occurrence of the next large earthquake. Faults entered a phase of clustered earthquake activity once they had reached a specific relative strain threshold. These results suggest that Tre Monti fault is the one most prone to break over the next century, with an estimated Mw 6.0-6.4. Our results document earthquake synchrony and clustering at a broader space and time scale than ever observed.