

A new method of ARGO buoys system observation data interpolation

Natalia Zakharova, Valery Agoshkov, and Eugene Parmuzin
Institute of Numerical Mathematics RAS, Russian Federation (zakharova_nb@mail.ru)

Study and solution of geophysical hydrodynamics problems are based on experimental and observation data from different sources. Despite large amount of observation data, availability of them often remains insufficient because data are provided on sets of irregular points and during the asynchronous moments of time.

In this work a new method of temperature fields creation on regular grids according to observation data is offered taking into account a transfer by their currents. By means of this method it is possible to receive "pseudo-observations" for the required moment of time and, thereby, to solve a problem of an asynchronism of geophysical information. The results of numerical experiments on the World Ocean area within ARGO buoys system data are given.

This study was supported by the Russian Foundation for Basic Research (project 11-01-12046, 12-05-00469) and by the Russian Federal target Program "Research and educational human resources for innovative Russia" (project 8219) for 2009-2013 and the Federal target program "Researches and development in priority fields of scientific and technological complex of Russia for 2007-2013" (project 11.519.11.1005) and the Ministry of education and science of Russia, project 14.A18.21.1901.

References

1. Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
2. Agoshkov V.I., Zakharova N.B., The creation of piecewise - harmonic interpolation on spherical surfaces. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 27, Issue 6, 2012.
3. Zakharova N.B., Lebedev S.A., Interpolation of on-line data of the ARGO buoys system for data assimilation in the World ocean circulation model. \\ Actual problems in remote sensing of the Earth from space: Principal physics, physical methods and technologies for monitoring of environment, of potentially dangerous occurrences and objects. The proceedings. Vol. 7. No. 4. 2010. (In russian)