

Hybrid-Vlasov simulation of plasma instabilities: first results from Vlasiator

Dimitry Pokhotelov (1), Sebastian von Alfthan (1), Yann Kempf (1,2), and Minna Palmroth (1)

(1) Finnish Meteorological Institute, Helsinki, Finland, (2) University of Helsinki, Helsinki, Finland

The newly developed code called Vlasiator simulates the dynamics of plasma using the hybrid-Vlasov model, where plasma ions are described by a full six-dimensional distribution function in ordinary and velocity space and electrons are modelled as a charge-neutralizing fluid. The Vlasiator code solves kinetic Vlasov equation for ions and ideal MHD equations for electron fluid. The code is engineered to run in a massively parallel setup on modern supercomputers using hybrid MPI-OpenMP parallelisation. First results of modelling plasma instabilities using Vlasiator in magnetosheath-type plasma environment will be presented. Large-scale shear flow instabilities, such as Kelvin-Helmholtz instability, will be considered, as well as the medium-scale mirror mode instability resulting from large temperature anisotropy across the magnetic field in high-beta magnetosheath plasma. Also the firehose instability typically occurring in the solar wind plasma will be considered. It will be shown that the new hybrid-Vlasov code is able to reproduce known features of the key instabilities.