

The CO₂ Vadose Project - Buffering capacity of a carbonate vadose zone on induced CO₂ leakage. Part 1: monitoring in a natural pilot experimental field

Grégory Cohen (1), Corinne Loisy (1), Olivier Le Roux (1), Bruno Garcia (2), Virgile Rouchon (2), Philippe Delaplace (2), and Adrian Cerepi (1)

(1) EA 4592 Géoressources et Environnement, University of Bordeaux, ENSEGID, 1, allée F. Daguin, 33 607 Pessac, France,

(2) IFP Energies Nouvelles - 1&4, avenue de Bois Préau, 92 500 Rueil-Malmaison, France

The Intergovernmental Panel on Climate Change Special Report on Carbon Capture and Storage identified various knowledge gaps that need to be resolved before the large-scale implementation of CO₂ geological storage to become possible. One of them is to determine what would be the impact of a CO₂ leakage from a geological storage on vadose zone and near surface environment.

The CO₂-Vadose project aims at i) understanding the behavior of CO₂ in the near surface carbonate environment during an induced CO₂ leakage, ii) assessing numerical simulations associated with CO₂ release experiments and iii) developing integrated field methodologies to detect and quantify a potential CO₂ leakage. A gas mixture of CO₂ and tracers (He and Kr) was released in a cavity (9 m³, 7 m deep) located in an abandoned limestone quarry in Gironde (France). More than forty gas probes were set up (in the near surface and all around the cavity in limestone) for following CO₂ concentrations before, during and after injection thanks to micro-GC and Li-Cor analyzers. The meteorological parameters were recorded at the site surface as well as around the injection room. Experimental observations of variations of electrical resistivity were also carried out in order to investigate the evolution of limestone geophysical property in response to possible leakages of geologically sequestered CO₂. The dynamic evolution of electrical resistivity was measured thanks to time-lapse electrical resistivity tomography.

Natural ground and limestone CO₂ concentrations were monitored during a year before CO₂ injection. Natural CO₂ concentrations variations were observed in order to plot a natural baseline and so to determine the best period for the injection and to distinguish biogenic from injected CO₂. These concentrations varied between about 400 ppm to more than 20,000 ppm, following cycles of about six weeks. Initial electrical resistivity tomography was also carried out just before the injection in order to have reference values and to characterize the heterogeneity of the limestone massif around the injection room.

The diffusion of CO₂ was followed thanks to CO₂ gas concentration measurements and resistive tomography. The numerical simulations done with COORESTM code were in good agreement with experimental results near the source. The results of this study show that CO₂ subsurface leakage can be anticipated thanks to inert gases used as tracers, like He and Kr. As part of a monitoring plan, the detection of noble gas increase could lead to the surveillance of the monitored area with accuracy, permitting to discriminate leakage CO₂ from natural one.